Error Bounds for Monotone Approximation Schemes for Non-convex Degenerate Elliptic Equations in R

نویسنده

  • ESPEN ROBSTAD JAKOBSEN
چکیده

In this paper we provide estimates of the rates of convergence of monotone approximation schemes for non-convex equations in one spacedimension. The equations under consideration are the degenerate elliptic Isaacs equations with x-depending coefficients, and the results applies in particular to finite difference methods and control schemes based on the dynamic programming principle. Recently, Krylov, Barles, and Jakobsen obtained similar estimates for convex Hamilton-Jacobi-Bellman equations in arbitrary spacedimensions. Our results extend these to non-convex equations in one spacedimension and are the first results for non-convex second order equations. Furthermore for finite difference equations, we obtain better rates that Krylov and can handle more general equations than Barles and Jakobsen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations

Recently, Krylov, Barles, and Jakobsen developed the theory for estimating errors of monotone approximation schemes for the Bellman equation (a convex Isaacs equation). In this paper we consider an extension of this theory to a class of non-convex multidimensional Isaacs equations. This is the first result of this kind for non-convex multidimensional fully non-linear problems. To get the error ...

متن کامل

Semi-Lagrangian schemes for linear and fully non-linear diffusion equations

For linear and fully non-linear diffusion equations of BellmanIsaacs type, we introduce a class of monotone approximation schemes relying on monotone interpolation. As opposed to classical numerical methods, these schemes converge for degenerate diffusion equations having general nondiagonal dominant coefficient matrices. Such schemes have to have a wide stencil in general. Besides providing a ...

متن کامل

Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations

We obtain non-symmetric upper and lower bounds on the rate of convergence of general monotone approximation/numerical schemes for parabolic Hamilton Jacobi Bellman Equations by introducing a new notion of consistency. We apply our general results to various schemes including finite difference schemes, splitting methods and the classical approximation by piecewise constant controls.

متن کامل

Error Bounds for Monotone Approximation Schemes for Hamilton-Jacobi-Bellman Equations

We obtain error bounds for monotone approximation schemes of Hamilton-Jacobi-Bellman equations. These bounds improve previous results of Krylov and the authors. The key step in the proof of these new estimates is the introduction of a switching system which allows the construction of approximate, (almost) smooth supersolutions for the Hamilton-Jacobi-Bellman equation.

متن کامل

Rate of Convergence of Finite-difference Approximations for Degenerate Linear Parabolic Equations with C and C Coefficients

We consider degenerate parabolic and elliptic equations of second order with C1 and C2 coefficients. Error bounds for certain types of finitedifference schemes are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002